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Dynamic scaling approach to glass formation
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Experimental data for the temperature dependence of relaxation times are used to argue that the dynamic
scaling form, with relaxation time diverging at the critical temperaffigeas (T—T.) "% is superior to the
classical Vogel form. This observation leads us to propose that glass formation can be described by a simple
mean-field limit of a phase transition. The order parameter is the fraction of all space that has sufficient free
volume to allow substantial motion, and grows logarithmically abbyeDiffusion of this free volume creates
random walk clusters that have cooperatively rearranged. We show that the distribution of cooperatively
moving clusters must have a Fisher exponent2. Dynamic scaling predicts a power law for the relaxation
modulusG(t)~t~?% wherez is the dynamic critical exponent relating the relaxation time of a cluster to its
size. Andrade creep, universally observed for all glass-forming materials, suggest&xperimental data on
the temperature dependence of viscosity and relaxation time of glass-forming liquids suggest that the exponent
v describing the correlation length divergence in this simple scaling picture is not always universal. Polymers
appear touniversally have vz=9 (making V=§). However, other glass-formers have unphysically large
values ofvz, suggesting that the availability of free volume is a necessary, but not sufficient, condition for
motion in these liquids. Such considerations lead us to asserv#wa9 is in fact universal for all glass-
forming liquids, but an energetic barrier to motion must also be overcome for strong glasses.

PACS numbd(s): 64.70.Pf, 61.43.Fs, 83.50.Fc

. INTRODUCTION f~g ", ®)

Many materials form amorphous glasses on cooling fronFigure 1 shows an application of Ed) to experimental data
the liquid stateg[1—-4], in lieu of crystallizing. Examples in- for polyvinyl-methylethefPVME), a glass-forming polymer
clude common silica window glass, many “floppy” organic with Ty=—24°C. Two sets of data, from oscillatory shear
small molecules, such as 1,2-diphenyl benzene, and marjy2,13 (OS, circleg and dielectric spectroscodyl2] (DS,
polymers. Despite the fact that the structure of the amorsquaresexperiments are shown, using te@me critical tem-
phous glass is essentially identical to a “snapshot” of theperature ;= —40°C=T,— 16 K. These data show that Eq.
liquid state, a detailed understanding of glass formation hagl) describes the temperature dependence of relaxation pro-
eluded physicists for many years. In this paper, we exploreesses reasonably. The same data are also described reason-
the utility of the modern critical phenomena description ofably by the empirical Vogel relatiofiL4,15
phase transitionib] for understanding glass formation. Such

an approach has been suggested based on computer simula- T~exgdB(T-T)/(T—-T.)], (4)
tions of simple glass-forming liquidgs] and polymerq 7],
and has seen some successes in recent j@8ls whereB is a constant andl., is the Vogel temperature. How-

Underlying glass formation is a constrained motion prob-ever, unlike the scaling form of Eql), the temperature
lem. In 1965 Adam and GibH40] suggested that, near the where the relaxation times diverge in the Vogel form is dif-
operationally defined glass transition temperatlife mo-  ferent for the two experimentsT (= —94 °C=T,— 70K for
tion is highly cooperative. Some regions of the sample haveOS andT..= —69 °C=T,—45K for DS) [12], strongly sug-
to wait for their immediate neighbors to move before theygesting that the Vogel relation is of the wrong form, with
can move, owing to the density being too large for liquidlike similar results observed for other polymer glass-formers
motion. Using this simple idea in the framework of dynamic[16—22. The fact that the same critical temperatiiede-
scaling for continuous phase transitigis11], we write that  scribes both sets of data in Fig. 1 is strong evidence that Eq.
the relaxation timeZ and size¢ of these cooperatively rear- (1) may have some physical significance.

ranging regions diverge at a critical temperatlige with the Furthermore, viscoelastic data on another polymer, atactic
form polymethyl-methacrylate(PMMA, with T,=106°C) are
. 2 known to not be described adequately by the Vogel relation
T~&~e ™, oy [23] [Eq. (4)] but are described within the precision of the

measurements by E@l) with T.=97 °C=T4—9 K (shown
as the triangles in Fig.)1The fact that the critical tempera-
ture is only roughly 10 K below the operational glass transi-
e=(T-T)IT, (2)  tion makes the dynamic scaling approach more intuitive than
the Vogel relation, for which the relaxation time diverges at
and the exponent describes the divergence of the correla-T.., roughly 50 K belowT 4 for most glass-forming polymers
tion lengthé [24]. Adam and Gibb$10] gave some physical interpretation

wherez is the dynamic exponent is the proximity to the
critical point
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FIG. 1. Critical scaling for the temperature dependence of seg-
mental relaxation times for PVME using a critical temperatlige
=—40°C and for atactic PMMA using a critical temperaturg FIG. 2. 24 representation of particles in a liquid negg. (a)
=97°C. Circles are the reciprocal of the frequency at which theParticles unable to move—initially particles can only vibrate in
glassy loss modulus of PVME has a maximum in oscillatory sheatheir cages of surrounding particles because there is no free volume
[filled (Ref.[12]), open(Ref.[13])], using time-temperature super- of sufficient size for particle motion on distances of order of the
position. Squares are the relaxation time from dielectric spectrosparticle size in this regiorb) Critical free volume forms—random
copy (multiplied by 1000 for clarity as determined by fitting data motion of particles in their cages results in a single free volume of
to the Havriliak-Negami functiohdescribed elsewher&ef.[12])]. sufficient size for particles to move. The arrow denotes the particle
Triangles are the segmental relaxation time from creep on atactithat is about to exchange places with the free volufog.Free
PMMA (Ref.[23]). volume diffusion—a random-walk chain of particles that have

moved by exchanging places with the free volume is shown as the
of T., as the temperature at which the configurational entropyhaded particlegd) Critical free volume disperses—the free vol-
is zero, but a recent simulation finds that some configuratme disperses by splitting into free volumes that are too small for
tional entropy remainf25] even belowT.. . particle motion on length scales comparable to the particle size.

Mode coupling theory26] uses the same form as E@)
to describe the high-temperature relaxation time data, but uggatches become more prevalent, since the density decreases
T, that is 30—70 Kabove T,. As a result, they find consid- as temperature is raised. These considerations lead to a natu-
erably smaller values of the exponertt, and also need to ral definition for theorder parameter the fraction of the
splice on an empirical form such as Ed) to describe the material that has sufficient free volume for particle motion.

relaxation time betweefiy andT.. Below T, the order parameter is zero, while aboVg it
slowly grows as the temperature is raised. We next present a
Il SCALING MODEL simple scaling model that predicts such a slpegarithmig

growth of the order parameter.

Since the scaling form of Eq1) appears promising, we Above T., but near the glass transition, there are only
are motivated to understand the physics behind it, with reisolated patches of sufficient free volume for particle motion.
gard to glass formation. We thus construct a simple mean€reation of such a free volume is shown in Figé)2and
field model, based on the idea of cooperative motion intro2(b). The free volume that exceeds the critical size for mo-
duced by Adam and GibH40]. Glass-forming liquids near tion diffuses randomly until the point in time where it dis-
T4 aredynamically heterogeneousnly some small fraction perses by splitting into smaller pieces of free volume that are
of the material is able to move at a given point in tif2g]. no longer large enough for motion, as shown in Figs) 2
We define &(particle) as the smallest entity capable of ran- and 2d). We define &({clustej) as the particles that were
dom motion. The particle of a flexible polymer is of order visited (and hence movedby the free volume during its
the monomer size, while for silica it is presumably a singlerandom walk before it disperséthe shaded particles in Figs.

Si atom. We define{{motion)) to occur when a particle 2(c) and 2d)]. Thus, each cluster is a random walk of par-
moves a distance of order of its own size. There is a broaticles that have cooperatively rearranged, in that they all used
distribution of free volume sizes in any amorphous materialthe same free volume to move. This physical picture is con-
[28,29 In the glassy state, the distribution is cutoff below sistent with, and very much inspired by, recent simulation
the critical size that allows for particle motion. The particlesresults [30] which find stringlike cooperative motion in
are confined to thecage) made up of surrounding particles glass-forming liquids neafy. The picture in Fig. 2 is a
and large-scale motion is not allowed. In contrast, the liquidgreatly oversimplified view of cluster formation. Many other
state always has some part of the free volume distributiomparticle motions are possible, such as the cooperative rota-
that exceeds the critical free-volume size for motion. Neation of n particles that roughly form a larger sphere. The
the glass transition, patches of free volume larger than thdetails of these motions depend on the specific glass-forming
critical size are rare, but as the material is heated suchmaterial considered. Indeed, even the simple Lennard-Jones
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sphere mixtures used for molecular dynamics simulations of- 1
ten exhibit more complex clusters than simple linear-chain ;=DV- (12
random walks(although pictures quite similar to Fig. 2 are
often observed30]). However, there is ainiversal aspect
shared by all clusters of cooperatively rearranged particles
The clusters are always formed by a random walk of the fre
volume through the material, making the clustefractal
dimension D=2.

Recent simulations report no thermodynamic divergences
as temperature is lowerg@5] (even belowT..), suggestin ) . .
the utiIiFt)y of a percolation model, as this cI:Ztss ogf]gmodelgs jgvhich we note is obeyed for mean-field percolati@d] as
known to have no thermodynamic divergences. In any finitdV€!l (whereD=4 and7=5/2). Since free volume diffuses
time interval, free volume of the critical size will randomly randomly, each cluster is a random walk, Be-=2, making
form, diffuse and disperse, leaving a distribution of random-7=2: The exponent for the order parameter is then gro
walk clusters of varying sizes. Since both creation and de=(7—2)/0=0]. The universality class withr=2 has 8
struction of free volume exceeding the critical size are ran=— 0, consistent with the slowly growing order parameter de-
dom processes, with no particular length scale, there shouin€d above. The glass transition is analogous terco-
be a power law distribution of cluster sizes, cut off by alation [31], in that the solid phase side of the transitioh (
largest size that diverges at the critical point. As the liquid is< Tc) has no static distinction. A3, is approached from
cooled(i.e., asT, is approached from aboy¢he order pa- above, the coopgratlvely rearranging clusters ge_t larger, and
rameter decreases. Motion is still possible for every particlefor T<T¢ the entire sample must move cooperatively, effec-

but the entire process takes much longer, allowing progredively prohibiting particles from moving any distance of or-
sively larger clusters to be created. der of their own size. In summary, the glass transition has

The distribution functionP(n) for the numbem of par-

Combining these with the scaling relatiop=(3—17)/o,
éeads to a general result for mean fi¢82]

2_3 13
5_ T, ( )

ticles in a cluster has the forfi31] =2 D=2 pB=0 (14)
P(n)~n~"(—n/S), (5) with the following relations between exponents:
where 7 is the Fisher exponent describing that power-law 2v=y=1/o. (15

distribution, and
e Recent molecular dynamics simulations of Lennard-Jones
S~e 7, (6)  sphere mixture§33—35 suggest that Eq(5) with 7=2 is
. . . . indeed the correct description of the cooperatively moving
IS th? number of parucle:s n th.e largest coope(anvely réarciuster distribution. They determined the distribution func-
g?ng('qnsg (Cll)us;r?f(‘g’)qoi_eh(sa'zseel?ig??;;gg:?&gﬁg%?rl)e':gth tion of clustersP(n), normalized such tha®(1)=1. With
each cluster is of the Ornstein-Zernike fof)] since each this normalization andt=2, Eq. (5) is rewritten as
cluster is a random walk 1-n
2 —
exp(—1/€) n“P(n) ex;{ S ) (16)
g(r)~ - (7)
By plotting I n?P(n)] against, we determined for each of
the seven temperatures they studied. We then us8 tad-
ues to construct the scaling curve shown in Fig. 3. The solid
curve in Fig. 3 is Eq(16). Figure 3 is strong evidence that
S ®) Eq. (5) with 7=2 is a reasonable form for the cluster distri-

' bution function. Owing to the rather limited temperature
and can be determined by summing all self-correlation funcfange covered in the simulations, we did not attempt to de-
tions[31] termine other exponents.

The measured quantities of interest here are the relaxation
times shown in Fig. 1, motivating us to consider dynamic

The average cluster size in the distribut®mlso diverges at
the critical point

S~2 g(n~&g(&)~&, (9 scaling. We make the standard dynamic scaling assumption
[11], that each cluster afi particles has a size, that deter-
meaning that the exponents are related as mines its relaxation timé&,, ,
y=2v. (10) T ~ri~n?P, (17)
The size and mass of the largest cluster are related by thfyg siress relaxation modul{ig4] G(t) is calculated from
fractal dimensior{31] D, as the distribution of cluster sizes, assuming linear additivity
SN (11)

, , G(t)=f P(n)exp(—t/7,)dn~t~P=V/z (18
which requires 0
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FIG. 3. Cluster distribution function from the molecular dynam-
ics simulations of Lennard-Jones liquids by Doretal. (Ref.[34])
in the scaling form of Eq(5) with 7=2. Reduced temperatures
kgT/e [where ¢ is the principle interparticle interaction energy
(Ref.[35])] are 0.5495filled circles, 0.5254(open circley 0.5052
(filled squarel 0.4795 (open squares 0.4685 (filled triangles,
0.4572(open triangles and 0.451Qinverted triangles

For glass formationD=2 and r=2, so dynamic scaling
predicts

G(t)~t 22, (19
Note that for 3d critical percolation[31] D=2.5, 7=2.2
and the experimental dynamic expongsi] z=4.5, making
the exponent in Eq(18 —D(r—1)/z=-0.67, in good
agreement with the experimentally observgsl7] G(t)

~17966 for randomly branched polymers in the critical per-
colation class.

For glass-forming materials, recoverable creep compli-

ance data universally show the Andrade re§@8-4Q:
J(t)~t13 nearT,. This is demonstrated beautifully in Fig.
3.50 of the Dissertation by Bef@0], where the retardation
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times predicted by the scaling modéiq. (21), solid curvg and
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Hence, our simple scaling model predicts the form of the
distribution of relaxation times with no adjustable param-
eters. We compare this distribution with the experimental
segmental relaxation time distribution of PVME calculated
from dielectric spectroscopy dafd?2] using the Havriliak-
Negami function41] in Fig. 4. While the agreement is not
quantitative, the overall shape of the distribution of relax-
ation times is quite well described by the scaling model.

IIl. COMPARISON WITH EXPERIMENT

A formal theory for bothv andz is still needed to com-
plete our understanding of glass formation. Unfortunately,

spectra of fourteen different glass-forming liquids are Com_expenrrr\]entshmdlcate th?l. rr|1ay be nonlgn|V(|ersaI. Thls.mayl
pared with their glass transition as the reference temperaturd!€an that there are multiple universality classes, or it could

They all show J(t)~t¥® in the same range: 10°<J
<10 °cn?/dyne and 10°<t<10°s. For a power law,
J(t)~1/G(t), makingz=6 from creep and recovery experi-
ments on glass-forming liquids.

The entire relaxation time distribution can be calculate
from the cluster distribution functiofEqg. (5)] and the dy-
namic scaling assumptidieq. (17)]. The distribution of re-
laxation times

d7;
P(7,)d7,~ d—n”n P(n)dn~T7:" ™ exp — 7°%/S)d T,

T D/z
Nﬁ_TD/ZeXF{_(g) d,];l' (20)

mean there is no universal description. The latter is the cur-
rently favored view, and Angell has proposed a scheme for
classifying glass-formers based on the proximity of their Vo-
gel temperature to their glass transitif8] (Ty—T..). In-

gSpired by this, we now investigate whether the observed ex-

ponents are correlated by the appropriate “fragility”
parameter from our dynamic scaling modély(-T.). The
results of analyzing data similar to the data of Fig. 1 for a
variety of glass-forming materials are summarized in Table |
and Fig. 5. We determingz and T, by minimizing the sum

of the squares of the residuals in lag(or log », when
viscosity data are usddl2]) fit to Eq. (1). A different pro-
cedure used by Soulet[8] leads to consistently larger val-
ues of vz and smaller values off.. Note that with our
method, independent determinations af and T for the
same material result in excellent agreement in most cases

is the product of a power law and a stretched exponentialsee the multiple entries for salol, ortho-terphenyl, cis-PlI,
cutoff, where the final relation was obtained by applying thePVAc, PVME, PVE, atactic-PP and propylene carbonate in
dynamic scaling assumption to the largest clust& ( Table |. To determine the error bars in Fig. 5, we try various
~S?P). For glass-forming liquidsD=2, r=2 andz=6, T, around the optimal one, and do not allow the correlation
making coefficientr? to be less than 0.999 times its optimum value.



PRE 61 DYNAMIC SCALING APPROACH TO GLASS FORMATION 1787
TABLE |. Exponents and critical temperatures for glass-forming liquids fit to(Eqwith z=6.
Material Method T4(°C) T.(°C) Tg— T (K) vz v
Sio, viscosity[46,48 1173 650150 520 20.36 3.4+1
GeG, viscosity [46] 545 360t 50 185 12.31 2.1+0.2
B,O; viscosity [49] 275 10G:90 175 2810 4.7+2
PdgN3oPs0 kinetics[50] 292 21730 75 14.74 2.550.7
PtysNizgPos kinetics[50] 209 13730 72 15.6:5 2.6+0.8
salol viscosity[51] —-60 —131+50 71 52-30 8.7-5
salol DS[52,53 —53 —84+15 31 24+ 8 4.0£1
Aroclor 1248 creep43] -50 —120+30 70 45+20 7.5:3
a-phenylo-cresol viscosity{51] -63 —133+50 70 54+ 30 9.0t5
6-phenyl ether creept3] -25 —80=30 55 4120 6.8:3
Pd;; CuSisg kinetics[50] 340 30710 33 10.5:2 1.8+0.4
ortho-terphenyl Dg52,54 -29 —-62+10 33 247 4.0+1
ortho-terphenyl creef43] -32 —65+15 33 2710 452
ortho-terphenyl viscosity51] -33 —65*=20 32 28-10 4.7+2
kresolphtalein-dimethylether Di$2,55 38 8+10 30 19-3 3.2+0.5
phenolphtalein-dimethylether DS2,55 21 -6+10 27 19t5 3.2:0.8
cis-polyisoprendcis-P)) 0S[22] —-63 —-90+11 27 2110 3.5:2
cis-Pl (segmental DS[22] -63 —88+9 25 19+5 3.2+1
polyvinylacetate(PVAc) creep[56,57] 35 27+2 8 9.8-1 1.6+-0.2
PVAc (segmental DS [52] 30 10+£5 20 12+2 2.0+0.3
1-propanol DY52,54 —168 —185+6 17 11.9-2 2.0+0.3
PVME 0S[12] —24 —42+5 18 10.5-1 1.8+0.2
PVME (segmental DS[12] —24 —39+6 15 10.3-2 1.7+0.4
Selenium viscosity58,59 27 10+3 17 11.5-1 1.9+0.2
polyvinylethylene(PVE) DS [60] 0 —14+5 14 10.8:3 1.80.5
PVE DS[61] 0 —13+8 13 10.5:3 1.8+0.5
1,4-PI (segmental DS [60] —-63 —74x4 11 9.6:2 1.6+0.4
glycerol DS[62] —-93 —103£5 10 13.5:2 2.3+0.4
atactic polypropylenéPP creep[63] -14 —24+5 10 9.7+2 1.6-0.4
atactic PP(segmental LS,0S,creep21] —-14 —23%2 9 14.6-2 2.4+0.4
propylene carbonate viscosifg4] -119 —128+5 9 16.3-4 2.7+0.7
propylene carbonate Di$2,53 —116 —122+3 6 11.5+2 1.9+0.3
atactic(PMMA) creep[23] 106 972 9 8.5+1 1.4+0.2
1,4-polybutadiené¢PB) 0S|[65] —-99 —103+3 4 8.6-1 1.4+0.2
2-methyltetrahydrofuran D52,66 -182 —184+2 2 11.22 1.9+0.3
[KNO3lsd CaNOg), 140 viscosity [67] 59 59+ 7 0 12,12 2.0£0.3

The results of this analysis are demonstrated in Fig. 6, for the=6, the finding thatvz=9 means thav=3 for polymers.
ortho-terphenyl viscosity data of Plazek, Bero, and ChayThe notable exceptions are cis-polyisoprene and atactic poly-
[43]. The optimalT.=—65°C, is indicated by the black propylene, which appear to have considerably langeex-
circles, and otheT . with correlation coefficients larger than ponents. One of the inorganic glasdeglenium also ap-
0.9992 are shown as gray circles. Such an analysis yieldpears to be in the universality class with the polymers. This
the asymmetric error bars of Fig. 5, which have the expectets hardly surprising, since selenium is believed to be poly-
correlation betweerT. and vz that result in curved error meric[44]. Assumingrz=9, we can rewrite Eq(1) as
bars. Figure 6 also shows that the scaling analysis only ap-
plies to the high viscosity data that are sufficiently close to
T.. The scaling naturally breaks down at high temperatures,
where there is sufficient free volume everywhere for liquid-This is tested directly in Fig. 7, which seems to provide a
like motion (i.e.,n=1). reasonable means to determifigfor polymers(as the tem-
Most of the polymerstriangles in Fig.  appear to be in  perature at which the relaxation time diverges
one universality class, which Angell terms “fragile.” Nearly =~ Three conclusions can be reached from Fig. 7. The high-
all polymers havél ;— T <20K and 8<vz<11. The differ-  temperature data for PVME and polybutadiene show that the
ences inT4— T, are most likely related to the rather different scaling regime where Eq22) is valid is limited to within
arbitrary definitions off ; used by different groups. We con- roughly 100 K ofT,. This is expected, because at high tem-
clude thatrz=9 andT4—T.=10K for all polymers. With  perature there is sufficient free volume everywhere for each

~(T—T,) ° for polymers. (22)
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FIG. 5. Correlation of the exponentz with T,—T, for the
glass-forming liquids listed in Table I, including flexible polymers
(open triangles organic small molecule®pen squargsand inor-
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FIG. 7. Scaling plot to determin@&, for flexible polymers, as-
sumingvz=9, applied to PBtriangles from OSRef.[65])], cis-PI
[filled circles from OS(Ref. [22])], 1,4-Pl[open circles from DS

ganic glassegfilled circles. The solid curves are error bars de- (Ref. [60])], PVME [filled diamonds from OSRef. [12]), open

scribed in the text.

diamonds from OSRef.[13])], PVE [filled squares from D$Ref.
[61]), open squares from DERef. [60])], PVAc [inverted filled

particle to move independently. The size of the largest clusgiangles from creefiRefs.[56] and[57]), inverted open triangles
ter decreases with temperature and eventually reaches th@em DS (Ref.[52])], and PMMA[open hexagons from cre¢Ref.
particle size, where the scaling picture no longer applies. Al[23])].

data sets used to generate Table | and Fig. 5 were truncated ) o

at high temperature when the scaling form no longer fit the®"€€p results on polyvinylacetate seen in Fig. 7 and Table |
data. Comparison of PVE and PVME shows that the prefact&y possibly pe the result of different tacticities of the two
tor in Eq.(22) is not universal for all polymers. Comparison Polymers studied.

of cis-PI with 1,4-PI in Fig. 7 indicate that their differences  1he floppy organic small molecule glass formeguares
are not as large as Table | and Fig. 6 suggest. The data fé Fig. 5 have much larger exponents (£3z<55), and
cis-PI need confirmation. One can see from Fig. 7 that th@lso larger fragility parameters (9KT;—T.<71K) mak-
data set of Plazek, Tan and O'Rourf@s] for PMMA con-  iNg them stronger glasses in Angell’s cla33|f|cat|on_. The un-
tains the largest relaxation timéand gets closest td;),  Physically large values of the exponert, coupled with the
perhaps explaining why the Vogel form was only observeds€emingly uncontrolled errofs30 in vz is not uncommon

to fail for PMMA. The differentT, obtained from DS and force us to question whether the scaling approach really ap-
plies to the small organic molecules, despite excellent fits of

1000

their viscosity[42] to Eq.(1). There appears to be a trend of

1015 . . . - .
1814 increasingvz with an increase iffy— T, for the small mol-
}812 ecule organic glass-formers. These results suggest that for
101:J the organic small molecules, it is not enough to simply have
]89 a free volume of the proper size. There may be some addi-

o 103 tional energy barriers restricting motidd,15,45, as dis-

© 186 cussed in detail below.

a }Oj Angell refers to SiQ, GeO, and BO; as ‘“strong”

= 183 | glasses because the critical temperature is far below the ap-
}8? 1 parent glass transitionT—T.>100 K). However, the trend
10° of increasingyvz as the glasses become stronger, observed for
18:; the floppy organic small molecules, does not hold for the
103 L= o inorganic glass-formers. B has the largestz=28 of the

strong inorganic glass formers. Gg@as a similarTy— T,
but hasyz=12. Figure 5 and Table | demonstrate the lack of
universality in bothvz and Ty —T,.

The nonuniversal character of glass formation is made

FIG. 6. Viscosity datdRef.[42]) of Plazeket al. (Ref.[43]) for
ortho-terphenyl, fit to Eq(1) using, from left to right,T.= —40,
—-45, -50, —-55, -60, —65, —70, —75, —80, —85, —90, —95, and
—100 °C. The optimall .= — 65 °C (black circle$ has the largest
correlation coefficient =0.9966), while the gray circles féf, ~ Table ). Instead of being universal, this important exponent
=—55,—-60, —70, —75, —80, and—85 °C have correlation coef- apparently varies over a wide range (£4<9). We at-
ficients larger than 0.998. The temperatures with correlation co- tempt a simple explanation of this nonuniversality amongst
efficients smaller than this value have open circles. Only the visthe nonpolymeric glass formers using material-specific ener-
cosities exceeding f(Poise were used for this analysis. getic barriers to motiof4,15,43 in the next section.

very evident whervz from the temperature dependence of
relaxation andz=6 from Andrade creep are combined to
determine the correlation length exponenflast column in
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FIG. 8. Scaling exponents for glass formation<2), and per- FIG. 9. Temperature dependence of viscosity for the inorganic
colation in various dimension&Ref. [31]) (d=2 has r=187/91 glass-former Ge® Filled circles are data of Fontana and Plummer
=2.05, d=3 hasr=2.2, d=4 hasr=2.3, d=5 hasr=2.4, and (Ref.[46]) and the solid curve is the regression fit to E28). The
d=6 hasr=5/2): Order parameter exponegt (filled triangles, ~ dashed curve is the Arrhenius part of Eg83) [expE/KT) and the
correlation length divergence exponentopen diamonds fractal ~ dotted curve is the algebraic divergence in E@3) ([(T
dimensionD (open squargsweight-average cluster size divergence ~To)/Tel ™).
exponenty (open circleg and largest cluster size divergence expo-
nent 14 (filled squares The curves are simply guides for the eye. T-T.\ @ E

T~ 77~( c) exp( ) (23

KT

IV. DISCUSSION

—3 R i . i .
For polymers,v=3 is apparently universalobtained  Two material-specific parameters thus describe the tempera-

from the experimental findings thaz=9 andz=6). This  tre dependence, a critical temperatligeand an activation
exponent makeg=1/o=3. All exponents for glass forma- energyE. Equation(23) has the same number of parameters
tion are then smooth continuations of the exponents for perare the empirical Vogel relatiofEq. (4)]. We demonstrate
colation[31] in dimensionsi=2, 3, 4, 5, and 6, as shown in the ability of Eq.(23) to describe data using the viscosity
Fig. 8. The upper critical dimension for percolationds data for the strong inorganic glass fornié6] GeG, in Fig.
=6, meaning that in six dimensions the mean-field exponent. The resulting fit parameters ar€.=379°C and E
hold (with 7=3) As d is decreasedy progressively de- =65kJ/mol, and the fit is shown as the solid curve. The
creases, and extrapolation beyord 187/91 ford=2 per-  critical temperature is comparable to that obtained previously
colation to 7=2 for glass formation leads directly to the (see Table)l The temperature dependence of the Arrhenius
conclusion that= 2. This strongly suggests that there may part of Eq.(23) [i.e., expE/kT)] is shown as the dashed
be some utility to the scaling approach for understandingurve in Fig. 9, while the algebraic divergence pHitT
glass formation in polymers. The physics behind the expo— Tc)/Tc]™°} is shown as the dotted line. Although the
nentv=3 deserves further theoretical attention. Arrhenius part does weakly decrease with temperatiine,
The nonuniversality ins, seen for non-polymeric glass- alge_bra|c_d|vergence d(_)mlnates the temperature de_pendence
forming liquids in Table I, strongly suggests that something®! ViSCOSity even for this strong glass. The Arrhenius tem-
is missing from the simple scaling picture described abovePerature depgndence simply allows the algebraic divergence
The scaling picture is built around an order parameter that igo adopt a universal exponent efyz=—9.

. X . The full results of fitting the nonpolymeric viscosity and
g‘:sferzcgr?r;hog 2555:;;$';1§2§ut?:nf§e \(/)?“:nn;?sfo\cvgzuon'relaxation time data to Eq23) are presented in Table II.
P poly ’ With the exception of Sig for which more data are clearly

—3 . .
a”‘?'”‘ 2, and the_fact that all the exponents n this class Arfeeded, the critical temperature resulting from a fit to Eq.
logical extrapolations of the known percolation exponents(23) is larger than for the simple scaling fit wia=0 and

(see Fig. 8 we suggest that having the requisite free volume; gy stablerz. The critical temperatures from different ex-
is a necessary condition, but not a sufficient condition forperiments agree very well for all glass-forming liquitkee
motion in nonpolymeric glass-forming liquids. Specifically, Taple |1 entries for ortho-terphenyl, salol, and propylene car-
we make the ansatz that the above scaling description wit§onate. The activation energies from dielectric spectroscopy
7=2 andv=3 properly describes the disappearance of freeare consistently smaller than those from viscosity measure-
volume as temperature is loweredeweryglass-forming lig-  ments, accounting for the different temperature dependences
uid, but there are material-specific energetic barriers to mofrom the two methods. Several of the glass-forming liquids
tion [4,15,49, described by an activation ener@y Such haveT, very close taTy, and the finding thaT, is actually
considerations lead to the following simple expression forabove T, for [KNOg],J CaNO;),]¢o probably reflects an
the temperature dependence of the relaxation toneiscos-  error in the experimental estimation of the glass transition.
ity) of all glass-forming liquids, Whenever available, we used glass transition data from origi-
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TABLE Il. Critical temperatures and activation energies for nonpolymeric glass-forming liquids fit t®8q.

Material method Tq(°C) T.(°C) Tg— T (K) E (kJ/mol)
Sio, viscosity[46,48 1173 440-100 730 230
GeOG viscosity [46] 545 3794 166 65
B,Os; viscosity[49] 275 2186 57 75
Pd,gNisPso kinetics[50] 292 2392 53 92
PtysNisePos kinetics[50] 209 156+ 2 53 96
Aroclor 1248 creep43] —50 —95+4 45 190
6-phenyl ether creept3] -25 —53+7 28 220
Pd;; CusSiig 5 kinetics[50] 340 312+1 28 42
ortho-terphenyl DS52,54 -29 —46+1 17 120
ortho-terphenyl creef43] -32 —50+2 18 160
ortho-terphenyl viscosity51] -33 —49+1 16 160
kresolphtalein-dimethylether Di$5,52 38 21+1 17 105
phenolphtalein-dimethylether DS5,52 21 5+1 16 120
salol DS[52,53 -53 —70x1 17 110
salol viscosity[51] -60 —74+3 14 120
1-propanol DY52,54 —168 —182+1 14 8
a-phenylo-cresol viscosity51] -63 —-72+1 9 80
glycerol DS[62] -93 —-98+1 5 28
propylene carbonate viscositg4] —119 —124+1 5 54
propylene carbonate Di$2,53 -116 —-121+1 5 17
2-methyltetrahydrofuran D§66,52 -182 —-183+1 1 8
[KNO3lsd CaNO3), 140 viscosity[67] 59 64+ 1 -5 45

nal reference$67] but more modern methods suggest thatters of cooperatively rearranged particles with fractal dimen-
Tg=66 °C for [KNO3lgdCaNQ;],o [68] making Tq—T,  sionD=2. As T, is approached from abov_e, pr_ogressively
=3 K in Table II. larger clusters are formed because more time is needed for
the entire sample to experience motion. We calculate the
distribution of cooperatively rearranging regions, and find
that it is described by a power law with exponert2. How-
ever, our model is incomplete because we have not calcu-
We present compelling experimental evidence that thdated the exponents that describe the divergences of the larg-
scaling form[Eq. (1) and ultimately Eq.(23)] for the tem-  est cooperatively rearranging region and its relaxation time
perature dependence of relaxation time in glass-forming ligas the critical temperature is approached from above. Future
uids is superior to the empirical Vogel forfiq. (4)]. In- theoretical work should focus on calculating these expo-
deed, Eq.(23) can describe the temperature dependence afients.
relaxation in all glass-forming liquids with two material pa-  In the absence of theory, we turned to experiments on
rameters: the critical temperatufg and the activation en- glass-forming liquids to evaluate these exponents. The dy-
ergy E. Either form can describe the experimental relaxatiomnamic exponenz=6 was determined from the empirical
time (or viscosity in the rangeT,<T<Ty+100K. How-  Andrade creep observed for all glass-forming materials. With
ever, relaxation monitored by different techniques consisz=6, r=2, andD=2 our scaling model predicts the distri-
tently give identical critical temperatures, while the Vogel bution of segmental relaxation times, which is in reasonable
temperatures can differ by as much as 25 K, and only havagreement with experiments. Experimental data for the tem-
an experimental uncertainty af3 K. Furthermore, the criti- perature dependence of relaxation tiee viscosity deter-
cal temperature is not as far beldy as the Vogel tempera- mined the exponent produeiz. We are encouraged by the
ture. To unambiguously test whether either form is correctpbservation that all polymers appear to be in a single-
relaxation times must be measured #auilibrium glasses universality class and that the model applies very well for all
betweenT; andT. The difficulty with these measurements polymers, withvz=9, suggesting that=3. This exponent
is that the approach to equilibrium can be very slow. Foris precisely what is expected from a simple extrapolation of
polymers, one typically needs to wait 1005K below T, v(7) using percolation models in various dimensionalities.
to age the glass into the equilibrium st4#7]. However, Therefore, we expeat= 2 is universal for all glass-forming
these experiments will allow measurements closéftthat  liquids.
should easily distinguish between the scaling and Vogel Nonpolymeric glass-forming liquids have much stronger
forms. divergences of viscosity than polymers, which suggests that
Using the simple idea that free volume diffuses randomlythe creation of the requisite free volume is not a sufficient
we have constructed a scaling description of glass formatiorcondition for motion in nonpolymeric glass formers. Excel-
Random diffusion of free volume creates random-walk clusdent fits of the temperature dependence of viscogityrelax-

V. CONCLUSIONS
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