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Dynamic scaling approach to glass formation

Ralph H. Colby
Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802

~Received 4 June 1999!

Experimental data for the temperature dependence of relaxation times are used to argue that the dynamic
scaling form, with relaxation time diverging at the critical temperatureTc as (T2Tc)

2nz, is superior to the
classical Vogel form. This observation leads us to propose that glass formation can be described by a simple
mean-field limit of a phase transition. The order parameter is the fraction of all space that has sufficient free
volume to allow substantial motion, and grows logarithmically aboveTc . Diffusion of this free volume creates
random walk clusters that have cooperatively rearranged. We show that the distribution of cooperatively
moving clusters must have a Fisher exponentt52. Dynamic scaling predicts a power law for the relaxation
modulusG(t);t22/z, wherez is the dynamic critical exponent relating the relaxation time of a cluster to its
size. Andrade creep, universally observed for all glass-forming materials, suggestsz56. Experimental data on
the temperature dependence of viscosity and relaxation time of glass-forming liquids suggest that the exponent
n describing the correlation length divergence in this simple scaling picture is not always universal. Polymers
appear touniversally have nz59 ~making n5

3
2 ). However, other glass-formers have unphysically large

values ofnz, suggesting that the availability of free volume is a necessary, but not sufficient, condition for
motion in these liquids. Such considerations lead us to assert thatnz59 is in fact universal for all glass-
forming liquids, but an energetic barrier to motion must also be overcome for strong glasses.

PACS number~s!: 64.70.Pf, 61.43.Fs, 83.50.Fc
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I. INTRODUCTION

Many materials form amorphous glasses on cooling fr
the liquid state@1–4#, in lieu of crystallizing. Examples in-
clude common silica window glass, many ‘‘floppy’’ organ
small molecules, such as 1,2-diphenyl benzene, and m
polymers. Despite the fact that the structure of the am
phous glass is essentially identical to a ‘‘snapshot’’ of t
liquid state, a detailed understanding of glass formation
eluded physicists for many years. In this paper, we exp
the utility of the modern critical phenomena description
phase transitions@5# for understanding glass formation. Suc
an approach has been suggested based on computer si
tions of simple glass-forming liquids@6# and polymers@7#,
and has seen some successes in recent years@8,9#.

Underlying glass formation is a constrained motion pro
lem. In 1965 Adam and Gibbs@10# suggested that, near th
operationally defined glass transition temperatureTg , mo-
tion is highly cooperative. Some regions of the sample ha
to wait for their immediate neighbors to move before th
can move, owing to the density being too large for liquidli
motion. Using this simple idea in the framework of dynam
scaling for continuous phase transitions@5,11#, we write that
the relaxation timeT and sizej of these cooperatively rear
ranging regions diverge at a critical temperatureTc , with the
form

T;jz;«2nz, ~1!

wherez is the dynamic exponent,« is the proximity to the
critical point

«[~T2Tc!/Tc ~2!

and the exponentn describes the divergence of the corre
tion lengthj
PRE 611063-651X/2000/61~2!/1783~10!/$15.00
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j;«2n. ~3!

Figure 1 shows an application of Eq.~1! to experimental data
for polyvinyl-methylether~PVME!, a glass-forming polymer
with Tg5224 °C. Two sets of data, from oscillatory she
@12,13# ~OS, circles! and dielectric spectroscopy@12# ~DS,
squares! experiments are shown, using thesame critical tem-
perature Tc5240 °C5Tg216 K. These data show that Eq
~1! describes the temperature dependence of relaxation
cesses reasonably. The same data are also described re
ably by the empirical Vogel relation@14,15#

T;exp@B~T2Tg!/~T2T`!#, ~4!

whereB is a constant andT` is the Vogel temperature. How
ever, unlike the scaling form of Eq.~1!, the temperature
where the relaxation times diverge in the Vogel form is d
ferent for the two experiments (T`5294 °C5Tg270 K for
OS andT`5269 °C5Tg245 K for DS! @12#, strongly sug-
gesting that the Vogel relation is of the wrong form, wi
similar results observed for other polymer glass-form
@16–22#. The fact that the same critical temperatureTc de-
scribes both sets of data in Fig. 1 is strong evidence that
~1! may have some physical significance.

Furthermore, viscoelastic data on another polymer, ata
polymethyl-methacrylate~PMMA, with Tg5106 °C) are
known to not be described adequately by the Vogel relat
@23# @Eq. ~4!# but are described within the precision of th
measurements by Eq.~1! with Tc597 °C5Tg29 K ~shown
as the triangles in Fig. 1!. The fact that the critical tempera
ture is only roughly 10 K below the operational glass tran
tion makes the dynamic scaling approach more intuitive th
the Vogel relation, for which the relaxation time diverges
T` , roughly 50 K belowTg for most glass-forming polymers
@24#. Adam and Gibbs@10# gave some physical interpretatio
1783 ©2000 The American Physical Society
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1784 PRE 61RALPH H. COLBY
of T` as the temperature at which the configurational entr
is zero, but a recent simulation finds that some configu
tional entropy remains@25# even belowT` .

Mode coupling theory@26# uses the same form as Eq.~1!
to describe the high-temperature relaxation time data, but
Tc that is 30–70 Kabove Tg . As a result, they find consid
erably smaller values of the exponentnz, and also need to
splice on an empirical form such as Eq.~4! to describe the
relaxation time betweenTg andTc .

II. SCALING MODEL

Since the scaling form of Eq.~1! appears promising, we
are motivated to understand the physics behind it, with
gard to glass formation. We thus construct a simple me
field model, based on the idea of cooperative motion int
duced by Adam and Gibbs@10#. Glass-forming liquids nea
Tg aredynamically heterogeneous: only some small fraction
of the material is able to move at a given point in time@27#.
We define â ^particle&& as the smallest entity capable of ra
dom motion. The particle of a flexible polymer is of ord
the monomer size, while for silica it is presumably a sing
Si atom. We definê ^motion&& to occur when a particle
moves a distance of order of its own size. There is a br
distribution of free volume sizes in any amorphous mater
@28,29# In the glassy state, the distribution is cutoff belo
the critical size that allows for particle motion. The particl
are confined to thê̂ cage&& made up of surrounding particle
and large-scale motion is not allowed. In contrast, the liq
state always has some part of the free volume distribu
that exceeds the critical free-volume size for motion. N
the glass transition, patches of free volume larger than
critical size are rare, but as the material is heated s

FIG. 1. Critical scaling for the temperature dependence of s
mental relaxation times for PVME using a critical temperatureTc

5240 °C and for atactic PMMA using a critical temperatureTc

597 °C. Circles are the reciprocal of the frequency at which
glassy loss modulus of PVME has a maximum in oscillatory sh
@filled ~Ref. @12#!, open~Ref. @13#!#, using time-temperature supe
position. Squares are the relaxation time from dielectric spect
copy ~multiplied by 1000 for clarity! as determined by fitting data
to the Havriliak-Negami function@described elsewhere~Ref. @12#!#.
Triangles are the segmental relaxation time from creep on ata
PMMA ~Ref. @23#!.
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patches become more prevalent, since the density decre
as temperature is raised. These considerations lead to a
ral definition for theorder parameter: the fraction of the
material that has sufficient free volume for particle motio
Below Tc the order parameter is zero, while aboveTc it
slowly grows as the temperature is raised. We next prese
simple scaling model that predicts such a slow~logarithmic!
growth of the order parameter.

Above Tc , but near the glass transition, there are on
isolated patches of sufficient free volume for particle motio
Creation of such a free volume is shown in Figs. 2~a! and
2~b!. The free volume that exceeds the critical size for m
tion diffuses randomly until the point in time where it dis
perses by splitting into smaller pieces of free volume that
no longer large enough for motion, as shown in Figs. 2~c!
and 2~d!. We define â ^cluster&& as the particles that wer
visited ~and hence moved! by the free volume during its
random walk before it disperses@the shaded particles in Figs
2~c! and 2~d!#. Thus, each cluster is a random walk of pa
ticles that have cooperatively rearranged, in that they all u
the same free volume to move. This physical picture is c
sistent with, and very much inspired by, recent simulat
results @30# which find stringlike cooperative motion in
glass-forming liquids nearTg . The picture in Fig. 2 is a
greatly oversimplified view of cluster formation. Many oth
particle motions are possible, such as the cooperative r
tion of n particles that roughly form a larger sphere. T
details of these motions depend on the specific glass-form
material considered. Indeed, even the simple Lennard-Jo
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tic

FIG. 2. 2-d representation of particles in a liquid nearTg . ~a!
Particles unable to move—initially particles can only vibrate
their cages of surrounding particles because there is no free vo
of sufficient size for particle motion on distances of order of t
particle size in this region.~b! Critical free volume forms—random
motion of particles in their cages results in a single free volume
sufficient size for particles to move. The arrow denotes the part
that is about to exchange places with the free volume.~c! Free
volume diffusion—a random-walk chain of particles that ha
moved by exchanging places with the free volume is shown as
shaded particles.~d! Critical free volume disperses—the free vo
ume disperses by splitting into free volumes that are too small
particle motion on length scales comparable to the particle size
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PRE 61 1785DYNAMIC SCALING APPROACH TO GLASS FORMATION
sphere mixtures used for molecular dynamics simulations
ten exhibit more complex clusters than simple linear-ch
random walks~although pictures quite similar to Fig. 2 ar
often observed@30#!. However, there is auniversal aspect
shared by all clusters of cooperatively rearranged particle:
The clusters are always formed by a random walk of the f
volume through the material, making the cluster’sfractal
dimension D52.

Recent simulations report no thermodynamic divergen
as temperature is lowered@25# ~even belowT`), suggesting
the utility of a percolation model, as this class of models
known to have no thermodynamic divergences. In any fin
time interval, free volume of the critical size will random
form, diffuse and disperse, leaving a distribution of rando
walk clusters of varying sizes. Since both creation and
struction of free volume exceeding the critical size are r
dom processes, with no particular length scale, there sh
be a power law distribution of cluster sizes, cut off by
largest size that diverges at the critical point. As the liquid
cooled~i.e., asTc is approached from above! the order pa-
rameter decreases. Motion is still possible for every parti
but the entire process takes much longer, allowing prog
sively larger clusters to be created.

The distribution functionP(n) for the numbern of par-
ticles in a cluster has the form@31#

P~n!;n2t ~2n/S!, ~5!

where t is the Fisher exponent describing that power-l
distribution, and

S;«21/s, ~6!

is the number of particles in the largest cooperatively re
ranging clusters@whose size defines the correlation lengthj
of Eqs. ~1! and ~3!#. The self-correlation functiong(r ) of
each cluster is of the Ornstein-Zernike form@5# since each
cluster is a random walk

g~r !;
exp~2r /j!

r
. ~7!

The average cluster size in the distributionS̄ also diverges at
the critical point

S̄;«2g, ~8!

and can be determined by summing all self-correlation fu
tions @31#

S̄;( g~r !;j3g~j!;j2, ~9!

meaning that the exponents are related as

g52n. ~10!

The size and mass of the largest cluster are related by
fractal dimension@31# D, as

S;jD, ~11!

which requires
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Combining these with the scaling relationg5(32t)/s,
leads to a general result for mean field@32#

2

D
532t, ~13!

which we note is obeyed for mean-field percolation@31# as
well ~whereD54 andt55/2). Since free volume diffuse
randomly, each cluster is a random walk, soD52, making
t52. The exponent for the order parameter is then zero@b
5(t22)/s50#. The universality class witht52 has b
50, consistent with the slowly growing order parameter d
fined above. The glass transition is analogous to 1-d perco-
lation @31#, in that the solid phase side of the transition (T
,Tc) has no static distinction. AsTc is approached from
above, the cooperatively rearranging clusters get larger,
for T<Tc the entire sample must move cooperatively, effe
tively prohibiting particles from moving any distance of o
der of their own size. In summary, the glass transition ha

t52 D52 b50, ~14!

with the following relations between exponents:

2n5g51/s. ~15!

Recent molecular dynamics simulations of Lennard-Jo
sphere mixtures@33–35# suggest that Eq.~5! with t52 is
indeed the correct description of the cooperatively mov
cluster distribution. They determined the distribution fun
tion of clustersP(n), normalized such thatP(1)51. With
this normalization andt52, Eq. ~5! is rewritten as

n2P~n!5expS 12n

S D . ~16!

By plotting ln@n2P(n)# againstn, we determinedS for each of
the seven temperatures they studied. We then use theS val-
ues to construct the scaling curve shown in Fig. 3. The s
curve in Fig. 3 is Eq.~16!. Figure 3 is strong evidence tha
Eq. ~5! with t52 is a reasonable form for the cluster dist
bution function. Owing to the rather limited temperatu
range covered in the simulations, we did not attempt to
termine other exponents.

The measured quantities of interest here are the relaxa
times shown in Fig. 1, motivating us to consider dynam
scaling. We make the standard dynamic scaling assump
@11#, that each cluster ofn particles has a sizer n that deter-
mines its relaxation timeTn ,

Tn;r n
z;nz/D. ~17!

The stress relaxation modulus@24# G(t) is calculated from
the distribution of cluster sizes, assuming linear additivity

G~ t !5E
0

`

P~n!exp~2t/Tn!dn;t2D~t21!/z. ~18!
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1786 PRE 61RALPH H. COLBY
For glass formation,D52 and t52, so dynamic scaling
predicts

G~ t !;t22/z. ~19!

Note that for 3-d critical percolation@31# D52.5, t52.2
and the experimental dynamic exponent@36# z54.5, making
the exponent in Eq.~18! 2D(t21)/z520.67, in good
agreement with the experimentally observed@37# G(t)
;t20.66 for randomly branched polymers in the critical pe
colation class.

For glass-forming materials, recoverable creep com
ance data universally show the Andrade result@38–40#:
J(t);t1/3 nearTg . This is demonstrated beautifully in Fig
3.50 of the Dissertation by Bero@40#, where the retardation
spectra of fourteen different glass-forming liquids are co
pared with their glass transition as the reference tempera
They all show J(t);t1/3 in the same range: 10213,J
,10210cm2/dyne and 1025,t,105 s. For a power law,
J(t);1/G(t), makingz56 from creep and recovery exper
ments on glass-forming liquids.

The entire relaxation time distribution can be calcula
from the cluster distribution function@Eq. ~5!# and the dy-
namic scaling assumption@Eq. ~17!#. The distribution of re-
laxation times

P~Tn!dTn;
dTn

dn
nP~n!dn;Tn

12tD/z exp~2T n
D/z/S!dTn

;Tn
12tD/z expF2S Tn

T D D/zGdTn , ~20!

is the product of a power law and a stretched exponen
cutoff, where the final relation was obtained by applying t
dynamic scaling assumption to the largest clusterT
;Sz/D). For glass-forming liquids,D52, t52 and z56,
making

FIG. 3. Cluster distribution function from the molecular dynam
ics simulations of Lennard-Jones liquids by Donatiet al. ~Ref. @34#!
in the scaling form of Eq.~5! with t52. Reduced temperature
kBT/« @where « is the principle interparticle interaction energ
~Ref. @35#!# are 0.5495~filled circles!, 0.5254~open circles!, 0.5052
~filled squares!, 0.4795 ~open squares!, 0.4685 ~filled triangles!,
0.4572~open triangles!, and 0.4510~inverted triangles!.
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P~Tn!dTn;Tn
1/3expF2S Tn

T D 1/3GdTn . ~21!

Hence, our simple scaling model predicts the form of t
distribution of relaxation times with no adjustable para
eters. We compare this distribution with the experimen
segmental relaxation time distribution of PVME calculat
from dielectric spectroscopy data@12# using the Havriliak-
Negami function@41# in Fig. 4. While the agreement is no
quantitative, the overall shape of the distribution of rela
ation times is quite well described by the scaling model.

III. COMPARISON WITH EXPERIMENT

A formal theory for bothn andz is still needed to com-
plete our understanding of glass formation. Unfortunate
experiments indicate thatn may be nonuniversal. This ma
mean that there are multiple universality classes, or it co
mean there is no universal description. The latter is the c
rently favored view, and Angell has proposed a scheme
classifying glass-formers based on the proximity of their V
gel temperature to their glass transition@3# (Tg2T`). In-
spired by this, we now investigate whether the observed
ponents are correlated by the appropriate ‘‘fragility
parameter from our dynamic scaling model (Tg2Tc). The
results of analyzing data similar to the data of Fig. 1 for
variety of glass-forming materials are summarized in Tab
and Fig. 5. We determinenz andTc by minimizing the sum
of the squares of the residuals in logt ~or log h, when
viscosity data are used@42#! fit to Eq. ~1!. A different pro-
cedure used by Souletie@8# leads to consistently larger va
ues of nz and smaller values ofTc . Note that with our
method, independent determinations ofnz and Tc for the
same material result in excellent agreement in most ca
~see the multiple entries for salol, ortho-terphenyl, cis-
PVAc, PVME, PVE, atactic-PP and propylene carbonate
Table I. To determine the error bars in Fig. 5, we try vario
Tc around the optimal one, and do not allow the correlat
coefficientr 2 to be less than 0.999 times its optimum valu

FIG. 4. Comparison of the distribution of segmental relaxat
times predicted by the scaling model@Eq. ~21!, solid curve# and
those measured by dielectric spectroscopy for PVME~dotted
curve!. The experimental curve was calculated from the empiri
Havriliak-Negami function~Ref. @41#! which fit the experimental
dielectric data very well~Ref. @12#!.
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TABLE I. Exponents and critical temperatures for glass-forming liquids fit to Eq.~1! with z56.

Material Method Tg (°C) Tc (°C) Tg2Tc ~K! nz n

SiO2 viscosity @46,48# 1173 6506150 520 20.366 3.461
GeO2 viscosity @46# 545 360650 185 12.361 2.160.2
B2O3 viscosity @49# 275 100690 175 28610 4.762

Pd48N32P20 kinetics @50# 292 217630 75 14.764 2.560.7
Pt45Ni30P25 kinetics @50# 209 137630 72 15.665 2.660.8

salol viscosity@51# 260 2131650 71 52630 8.765
salol DS@52,53# 253 284615 31 2468 4.061

Aroclor 1248 creep@43# 250 2120630 70 45620 7.563
a-phenyl-o-cresol viscosity@51# 263 2133650 70 54630 9.065

6-phenyl ether creep@43# 225 280630 55 41620 6.863
Pd77.5Cu6Si16.5 kinetics @50# 340 307610 33 10.562 1.860.4
ortho-terphenyl DS@52,54# 229 262610 33 2467 4.061
ortho-terphenyl creep@43# 232 265615 33 27610 4.562
ortho-terphenyl viscosity@51# 233 265620 32 28610 4.762

kresolphtalein-dimethylether DS@52,55# 38 8610 30 1963 3.260.5
phenolphtalein-dimethylether DS@52,55# 21 26610 27 1965 3.260.8

cis-polyisoprene~cis-PI! OS @22# 263 290611 27 21610 3.562
cis-PI ~segmental! DS @22# 263 28869 25 1965 3.261

polyvinylacetate~PVAc! creep@56,57# 35 2762 8 9.861 1.660.2
PVAc ~segmental! DS @52# 30 1065 20 1262 2.060.3

1-propanol DS@52,54# 2168 218566 17 11.962 2.060.3
PVME OS @12# 224 24265 18 10.561 1.860.2

PVME ~segmental! DS @12# 224 23966 15 10.362 1.760.4
Selenium viscosity@58,59# 27 1063 17 11.561 1.960.2

polyvinylethylene~PVE! DS @60# 0 21465 14 10.863 1.860.5
PVE DS @61# 0 21368 13 10.563 1.860.5

1,4-PI ~segmental! DS @60# 263 27464 11 9.662 1.660.4
glycerol DS@62# 293 210365 10 13.562 2.360.4

atactic polypropylene~PP! creep@63# 214 22465 10 9.762 1.660.4
atactic PP~segmental! LS,OS,creep@21# 214 22362 9 14.662 2.460.4
propylene carbonate viscosity@64# 2119 212865 9 16.364 2.760.7
propylene carbonate DS@52,53# 2116 212263 6 11.562 1.960.3

atactic~PMMA! creep@23# 106 9762 9 8.561 1.460.2
1,4-polybutadiene~PB! OS @65# 299 210363 4 8.661 1.460.2
2-methyltetrahydrofuran DS@52,66# 2182 218462 2 11.262 1.960.3
@KNO3#60@Ca~NO3!2#40 viscosity @67# 59 5967 0 12.162 2.060.3
th
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The results of this analysis are demonstrated in Fig. 6, for
ortho-terphenyl viscosity data of Plazek, Bero, and Ch
@43#. The optimalTc5265 °C, is indicated by the black
circles, and otherTc with correlation coefficients larger tha
0.999r 2 are shown as gray circles. Such an analysis yie
the asymmetric error bars of Fig. 5, which have the expec
correlation betweenTc and nz that result in curved erro
bars. Figure 6 also shows that the scaling analysis only
plies to the high viscosity data that are sufficiently close
Tc . The scaling naturally breaks down at high temperatu
where there is sufficient free volume everywhere for liqu
like motion ~i.e., n51).

Most of the polymers~triangles in Fig. 5! appear to be in
one universality class, which Angell terms ‘‘fragile.’’ Nearl
all polymers haveTg2Tc,20 K and 8,nz,11. The differ-
ences inTg2Tc are most likely related to the rather differe
arbitrary definitions ofTg used by different groups. We con
clude thatnz>9 andTg2Tc>10 K for all polymers. With
e
y

s
d

p-
o
s,
-

z56, the finding thatnz59 means thatn5 3
2 for polymers.

The notable exceptions are cis-polyisoprene and atactic p
propylene, which appear to have considerably largernz ex-
ponents. One of the inorganic glasses~selenium! also ap-
pears to be in the universality class with the polymers. T
is hardly surprising, since selenium is believed to be po
meric @44#. Assumingnz59, we can rewrite Eq.~1! as

t;~T2Tc!
29 for polymers. ~22!

This is tested directly in Fig. 7, which seems to provide
reasonable means to determineTc for polymers~as the tem-
perature at which the relaxation time diverges!.

Three conclusions can be reached from Fig. 7. The hi
temperature data for PVME and polybutadiene show that
scaling regime where Eq.~22! is valid is limited to within
roughly 100 K ofTc . This is expected, because at high te
perature there is sufficient free volume everywhere for e
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1788 PRE 61RALPH H. COLBY
particle to move independently. The size of the largest c
ter decreases with temperature and eventually reaches
particle size, where the scaling picture no longer applies.
data sets used to generate Table I and Fig. 5 were trunc
at high temperature when the scaling form no longer fit
data. Comparison of PVE and PVME shows that the pref
tor in Eq. ~22! is not universal for all polymers. Compariso
of cis-PI with 1,4-PI in Fig. 7 indicate that their difference
are not as large as Table I and Fig. 6 suggest. The data
cis-PI need confirmation. One can see from Fig. 7 that
data set of Plazek, Tan and O’Rourke@23# for PMMA con-
tains the largest relaxation times~and gets closest toTc),
perhaps explaining why the Vogel form was only observ
to fail for PMMA. The differentTc obtained from DS and

FIG. 5. Correlation of the exponentnz with Tg2Tc for the
glass-forming liquids listed in Table I, including flexible polyme
~open triangles!, organic small molecules~open squares! and inor-
ganic glasses~filled circles!. The solid curves are error bars d
scribed in the text.

FIG. 6. Viscosity data~Ref. @42#! of Plazeket al. ~Ref. @43#! for
ortho-terphenyl, fit to Eq.~1! using, from left to right,Tc5240,
245,250,255,260,265,270,275,280,285,290,295, and
2100 °C. The optimalTc5265 °C ~black circles! has the largest
correlation coefficient (r 250.9966), while the gray circles forTc

5255, 260, 270, 275, 280, and285 °C have correlation coef
ficients larger than 0.999r 2. The temperatures with correlation co
efficients smaller than this value have open circles. Only the
cosities exceeding 104 Poise were used for this analysis.
s-
the
ll
ted
e
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creep results on polyvinylacetate seen in Fig. 7 and Tab
may possibly be the result of different tacticities of the tw
polymers studied.

The floppy organic small molecule glass formers~squares
in Fig. 5! have much larger exponents (13,nz,55), and
also larger fragility parameters (9 K<Tg2Tc<71 K) mak-
ing them stronger glasses in Angell’s classification. The
physically large values of the exponentnz, coupled with the
seemingly uncontrolled errors~630 in nz is not uncommon!
force us to question whether the scaling approach really
plies to the small organic molecules, despite excellent fits
their viscosity@42# to Eq. ~1!. There appears to be a trend
increasingnz with an increase inTg2Tc , for the small mol-
ecule organic glass-formers. These results suggest tha
the organic small molecules, it is not enough to simply ha
a free volume of the proper size. There may be some a
tional energy barriers restricting motion@4,15,45#, as dis-
cussed in detail below.

Angell refers to SiO2, GeO2, and B2O3 as ‘‘strong’’
glasses because the critical temperature is far below the
parent glass transition (Tg2Tc.100 K). However, the trend
of increasingnz as the glasses become stronger, observed
the floppy organic small molecules, does not hold for t
inorganic glass-formers. B2O3 has the largestnz528 of the
strong inorganic glass formers. GeO2 has a similarTg2Tc ,
but hasnz512. Figure 5 and Table I demonstrate the lack
universality in bothnz andTg2Tc .

The nonuniversal character of glass formation is ma
very evident whennz from the temperature dependence
relaxation andz56 from Andrade creep are combined
determine the correlation length exponentn ~last column in
Table I!. Instead of being universal, this important expone
apparently varies over a wide range (1.4<n<9). We at-
tempt a simple explanation of this nonuniversality amon
the nonpolymeric glass formers using material-specific en
getic barriers to motion@4,15,45# in the next section.
-

FIG. 7. Scaling plot to determineTc for flexible polymers, as-
sumingnz59, applied to PB@triangles from OS~Ref. @65#!#, cis-PI
@filled circles from OS~Ref. @22#!#, 1,4-PI @open circles from DS
~Ref. @60#!#, PVME @filled diamonds from OS~Ref. @12#!, open
diamonds from OS~Ref. @13#!#, PVE @filled squares from DS~Ref.
@61#!, open squares from DS~Ref. @60#!#, PVAc @inverted filled
triangles from creep~Refs. @56# and @57#!, inverted open triangles
from DS ~Ref. @52#!#, and PMMA@open hexagons from creep~Ref.
@23#!#.
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IV. DISCUSSION

For polymers,n5 3
2 is apparently universal~obtained

from the experimental findings thatnz59 andz56). This
exponent makesg51/s53. All exponents for glass forma
tion are then smooth continuations of the exponents for p
colation@31# in dimensionsd52, 3, 4, 5, and 6, as shown i
Fig. 8. The upper critical dimension for percolation isd
56, meaning that in six dimensions the mean-field expone
hold ~with t5 5

2 ) As d is decreased,t progressively de-
creases, and extrapolation beyondt5187/91 ford52 per-
colation to t52 for glass formation leads directly to th
conclusion thatn5 3

2 . This strongly suggests that there m
be some utility to the scaling approach for understand
glass formation in polymers. The physics behind the ex
nentn5 3

2 deserves further theoretical attention.
The nonuniversality inn, seen for non-polymeric glass

forming liquids in Table I, strongly suggests that someth
is missing from the simple scaling picture described abo
The scaling picture is built around an order parameter tha
the fraction of all space with enough free volume for motio
Based on the successful description of polymers, witht52
andn5 3

2 , and the fact that all the exponents in this class
logical extrapolations of the known percolation expone
~see Fig. 8!, we suggest that having the requisite free volu
is a necessary condition, but not a sufficient condition
motion in nonpolymeric glass-forming liquids. Specificall
we make the ansatz that the above scaling description
t52 andn5 3

2 properly describes the disappearance of f
volume as temperature is lowered ineveryglass-forming liq-
uid, but there are material-specific energetic barriers to m
tion @4,15,45#, described by an activation energyE. Such
considerations lead to the following simple expression
the temperature dependence of the relaxation time~or viscos-
ity! of all glass-forming liquids,

FIG. 8. Scaling exponents for glass formation (t52), and per-
colation in various dimensions~Ref. @31#! (d52 has t5187/91
52.05, d53 hast52.2, d54 hast52.3, d55 hast52.4, and
d56 hast55/2): Order parameter exponentb ~filled triangles!,
correlation length divergence exponentn ~open diamonds!, fractal
dimensionD ~open squares!, weight-average cluster size divergen
exponentg ~open circles!, and largest cluster size divergence exp
nent 1/s ~filled squares!. The curves are simply guides for the ey
r-

ts

g
-

g
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.
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r

t;h;S T2Tc

Tc
D 29

expS E

kTD . ~23!

Two material-specific parameters thus describe the temp
ture dependence, a critical temperatureTc and an activation
energyE. Equation~23! has the same number of paramete
are the empirical Vogel relation@Eq. ~4!#. We demonstrate
the ability of Eq. ~23! to describe data using the viscosi
data for the strong inorganic glass former@46# GeO2 in Fig.
9. The resulting fit parameters areTc5379 °C and E
565 kJ/mol, and the fit is shown as the solid curve. T
critical temperature is comparable to that obtained previou
~see Table I!. The temperature dependence of the Arrhen
part of Eq. ~23! @i.e., exp(E/kT)# is shown as the dashe
curve in Fig. 9, while the algebraic divergence part$@(T
2Tc)/Tc#

29% is shown as the dotted line. Although th
Arrhenius part does weakly decrease with temperature,the
algebraic divergence dominates the temperature depende
of viscosity, even for this strong glass. The Arrhenius tem
perature dependence simply allows the algebraic diverge
to adopt a universal exponent of2nz529.

The full results of fitting the nonpolymeric viscosity an
relaxation time data to Eq.~23! are presented in Table II
With the exception of SiO2, for which more data are clearly
needed, the critical temperature resulting from a fit to E
~23! is larger than for the simple scaling fit withE50 and
adjustablenz. The critical temperatures from different ex
periments agree very well for all glass-forming liquids~see
Table II entries for ortho-terphenyl, salol, and propylene c
bonate!. The activation energies from dielectric spectrosco
are consistently smaller than those from viscosity meas
ments, accounting for the different temperature dependen
from the two methods. Several of the glass-forming liqu
haveTc very close toTg , and the finding thatTc is actually
above Tg for @KNO3#40@Ca~NO3)2] 60 probably reflects an
error in the experimental estimation of the glass transiti
Whenever available, we used glass transition data from or

-

FIG. 9. Temperature dependence of viscosity for the inorga
glass-former GeO2. Filled circles are data of Fontana and Plumm
~Ref. @46#! and the solid curve is the regression fit to Eq.~23!. The
dashed curve is the Arrhenius part of Eq.~23! @exp(E/kT) and the
dotted curve is the algebraic divergence in Eq.~23! (†(T
2Tc)/Tc#

29
….
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TABLE II. Critical temperatures and activation energies for nonpolymeric glass-forming liquids fit to Eq.~23!.

Material method Tg (°C) Tc (°C) Tg2Tc ~K! E ~kJ/mol!

SiO2 viscosity @46,48# 1173 4406100 730 230
GeO2 viscosity @46# 545 37964 166 65
B2O3 viscosity @49# 275 21866 57 75
Pd48Ni32P20 kinetics @50# 292 23962 53 92
Pt45Ni56P25 kinetics @50# 209 15662 53 96
Aroclor 1248 creep@43# 250 29564 45 190
6-phenyl ether creep@43# 225 25367 28 220
Pd77.5Cu6Si16.5 kinetics @50# 340 31261 28 42
ortho-terphenyl DS@52,54# 229 24661 17 120
ortho-terphenyl creep@43# 232 25062 18 160
ortho-terphenyl viscosity@51# 233 24961 16 160
kresolphtalein-dimethylether DS@55,52# 38 2161 17 105
phenolphtalein-dimethylether DS@55,52# 21 561 16 120
salol DS@52,53# 253 27061 17 110
salol viscosity@51# 260 27463 14 120
1-propanol DS@52,54# 2168 218261 14 8
a-phenyl-o-cresol viscosity@51# 263 27261 9 80
glycerol DS@62# 293 29861 5 28
propylene carbonate viscosity@64# 2119 212461 5 54
propylene carbonate DS@52,53# 2116 212161 5 17
2-methyltetrahydrofuran DS@66,52# 2182 218361 1 8
@KNO3#60@Ca~NO3!2#40 viscosity @67# 59 6461 25 45
a
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nal references@67# but more modern methods suggest th
Tg566 °C for @KNO3#60@CaNO3#40 @68# making Tg2Tc
53 K in Table II.

V. CONCLUSIONS

We present compelling experimental evidence that
scaling form@Eq. ~1! and ultimately Eq.~23!# for the tem-
perature dependence of relaxation time in glass-forming
uids is superior to the empirical Vogel form@Eq. ~4!#. In-
deed, Eq.~23! can describe the temperature dependence
relaxation in all glass-forming liquids with two material p
rameters: the critical temperatureTc and the activation en
ergyE. Either form can describe the experimental relaxat
time ~or viscosity! in the rangeTg,T,Tg1100 K. How-
ever, relaxation monitored by different techniques cons
tently give identical critical temperatures, while the Vog
temperatures can differ by as much as 25 K, and only h
an experimental uncertainty of63 K. Furthermore, the criti-
cal temperature is not as far belowTg as the Vogel tempera
ture. To unambiguously test whether either form is corre
relaxation times must be measured forequilibrium glasses
betweenTc andTg . The difficulty with these measuremen
is that the approach to equilibrium can be very slow. F
polymers, one typically needs to wait 100 h, 5 K belowTg ,
to age the glass into the equilibrium state@47#. However,
these experiments will allow measurements closer toTc that
should easily distinguish between the scaling and Vo
forms.

Using the simple idea that free volume diffuses random
we have constructed a scaling description of glass format
Random diffusion of free volume creates random-walk cl
t

e

-

of

n

-
l
e

t,

r

l

,
n.
-

ters of cooperatively rearranged particles with fractal dim
sion D52. As Tc is approached from above, progressive
larger clusters are formed because more time is needed
the entire sample to experience motion. We calculate
distribution of cooperatively rearranging regions, and fi
that it is described by a power law with exponentt52. How-
ever, our model is incomplete because we have not ca
lated the exponents that describe the divergences of the
est cooperatively rearranging region and its relaxation ti
as the critical temperature is approached from above. Fu
theoretical work should focus on calculating these ex
nents.

In the absence of theory, we turned to experiments
glass-forming liquids to evaluate these exponents. The
namic exponentz56 was determined from the empirica
Andrade creep observed for all glass-forming materials. W
z56, t52, andD52 our scaling model predicts the distr
bution of segmental relaxation times, which is in reasona
agreement with experiments. Experimental data for the te
perature dependence of relaxation time~or viscosity! deter-
mined the exponent productnz. We are encouraged by th
observation that all polymers appear to be in a sing
universality class and that the model applies very well for
polymers, withnz59, suggesting thatn5 3

2 . This exponent
is precisely what is expected from a simple extrapolation
n(t) using percolation models in various dimensionalitie
Therefore, we expectn5 3

2 is universal for all glass-forming
liquids.

Nonpolymeric glass-forming liquids have much strong
divergences of viscosity than polymers, which suggests
the creation of the requisite free volume is not a sufficie
condition for motion in nonpolymeric glass formers. Exce
lent fits of the temperature dependence of viscosity~or relax-
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ation time! are obtained for these materials usingn5 3
2 and

z56 ~i.e., nz59), coupled with a thermally activated pro
cess@Eq. ~23!#. The stronger glasses have substantial act
tion energies, but the algebraic divergence from the sca
theory dominates the temperature dependence of relaxa
processes. A theoretical explanation of why the activat
energy is zero~or very small! for polymers and substantia
for strong glass formers is clearly needed. Replica meth
appear promising for such calculations@69,70#.
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